Abstract
In this paper, we analyze a coupled system of highly degenerate elliptic-parabolic partial differential equations for two-phase incompressible flow in porous media. This system involves a saturation and a global pressure (or a total flow velocity). First, we show that the saturation is Hölder continuous both in space and time and the total velocity is Hölder continuous in space (uniformly in time). Applying this regularity result, we then establish the stability of the saturation and pressure with respect to initial and boundary data, from which uniqueness of the solution to the system follows. Finally, we establish a stabilization result on the asymptotic behavior of the saturation and pressure; we prove that the solution to the present system converges (in appropriate norms) to the solution of a stationary system as time goes to infinity. An example is given to show typical regularity of the saturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.