Abstract

Abstract In this paper, we deal with the existence of nontrivial nonnegative solutions for a ( p , N ) {(p,N)} -Laplacian Schrödinger–Kirchhoff problem in ℝ N {\mathbb{R}^{N}} with singular exponential nonlinearity. The main features of the paper are the ( p , N ) {(p,N)} growth of the elliptic operators, the double lack of compactness, and the fact that the Kirchhoff function is of degenerate type. To establish the existence results, we use the mountain pass theorem, the Ekeland variational principle, the singular Trudinger–Moser inequality, and a completely new Brézis–Lieb-type lemma for singular exponential nonlinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.