Abstract

In this paper, the degenerate scale for plate problem is studied. For the continuous model, we use the null-field integral equation, Fourier series and the series expansion in terms of degenerate kernel for fundamental solutions to examine the solvability of BIEM for circular thin plates. Any two of the four boundary integral equations in the plate formulation may be chosen. For the discrete model, the circulant is employed to determine the rank deficiency of the influence matrix. Both approaches, continuous and discrete models, lead to the same result of degenerate scale. We study the nonunique solution analytically for the circular plate and find degenerate scales. The similar properties of solvability condition between the membrane (Laplace) and plate (biharmonic) problems are also examined. The number of degenerate scales for the six boundary integral formulations is also determined.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.