Abstract

Dowling showed that the Whitney numbers of the first kind and of the second kind satisfy Stirling number-like relations. Recently, Kim-Kim introduced the degenerate r-Whitney numbers of the first kind and of the second kind, as degenerate versions and further generalizations of the Whitney numbers of both kinds. The normal ordering of an integral power of the number operator in terms of boson operators is expressed with the help of the Stirling numbers of the second kind. In this paper, it is noted that the normal ordering of a certain quantity involving the number operator is expressed in terms of the degenerate r-Whitney numbers of the second kind. We derive some properties, recurrence relations, orthogonality relations and several identities on those numbers from such normal ordering. In addition, we consider the degenerate r-Dowling polynomials as a natural extension of the degenerate r-Whitney numbers of the second kind and investigate their properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.