Abstract
We address the vanishing viscosity limit of the regularized problem studied in Smarrazzo and Tesei [Arch Rat Mech Anal 2012 (in press)]. We show that the limiting points in a suitable topology of the family of solutions of the regularized problem can be regarded as suitably defined weak measure-valued solutions of the original problem. In general, these solutions are the sum of a regular term, which is absolutely continuous with respect to the Lebesgue measure, and a singular term, which is a Radon measure singular with respect to the other. By using a family of entropy inequalities, we prove that the singular term is nondecreasing in time. We also characterize the disintegration of the Young measure associated with the regular term, proving that it is a superposition of two Dirac masses with support on the branches of the graph of the nonlinearity $${\varphi}$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.