Abstract

AbstractLet 𝔾 be a step-two nilpotent group of H-type with Lie algebra 𝔊 = V ⊕ t. We define a class of vector fields X = {Xj} on 𝔾 depending on a real parameter k ≥ 1, and we consider the corresponding p-Laplacian operator Lp,ku = divX(|∇Xu|p−2∇Xu). For k = 1 the vector fields X = {Xj} are the left invariant vector fields corresponding to an orthonormal basis of V; for 𝔾 being the Heisenberg group the vector fields are the Greiner fields. In this paper we obtain the fundamental solution for the operator Lp,k and as an application, we get a Hardy type inequality associated with X.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.