Abstract

We construct various types of degenerate multi-soliton and multi-breather solutions for the sine-Gordon equation based on Bäcklund transformations, Darboux–Crum transformations and Hirota’s direct method. We compare the different solution procedures and study the properties of the solutions. Many of them exhibit a compound like behaviour on a small timescale, but their individual one-soliton constituents separate for large time. Exceptions are degenerate cnoidal kink solutions that we construct via inverse scattering from shifted Lamé potentials. These type of solutions have constant speed and do not display any time-delay. We analyse the asymptotic behaviour of the solutions and compute explicit analytic expressions for time-dependent displacements between the individual one-soliton constituents for any number of degeneracies. When expressed in terms of the soliton speed and spectral parameter the expression found is of the same generic form as the one formerly found for the Korteweg–de-Vries equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.