Abstract

Density functional theory (DFT) calculations are performed on a series of double and single proton-transfer reactions to study the variation in polarizations in complexes during the dynamics of proton transfer from one isoenergetic, hydrogen-bonded ground-state structure to the other. The isotropic average polarizability (alpha(av)) shows an interesting single-humped profile with a maxima coinciding with the transition state of the reaction. Similar profiles are also computed at Nd:YaG frequencies. The origin of the maximal polarizability at the transition state is traced to maximal charge separation and large D (donor)-A (acceptor) distances. Maximal polarizability for the transition state suggests an interesting, novel, and less memory extensive computational tool to locate the transition state for hydrogen-transfer reactions in hydrogen-bonded complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.