Abstract

Generalized and Gaussian coherent states constructed for quantum system with degeneracies in the energy spectrum are compared with respect to some minimal definitions and fundamental properties they have to satisfy. The generalized coherent states must be eigenstates of a certain annihilation operator that has to be properly defined in the presence of degeneracies. The Gaussian coherent states are, in the particular harmonic oscillator case, an approximation of the generalized coherent states and so the localizability in phase space of the particle in those states is very good. For other quantum systems, this last property serves as a definition of those Gaussian coherent states. The example of a particle in a two-dimensional square box is thus revisited having in mind the preceding definitions of generalized and Gaussian coherent states and also the preservation of the important property known as the resolution of the identity operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.