Abstract

A differential operator ℒ, arising from the differential expression $$lv(t) \equiv ( - 1)^r v^{[n]} (t) + \sum\nolimits_{k = 0}^{n - 1} {p_k } (t)v^{[k]} (t) + Av(t),0 \leqslant t \leqslant 1,$$ , and system of boundary value conditions $$P_v [v] = \sum\nolimits_{k = 0}^{n_v } {\alpha _{vk} } r^{[k]} (1) = 0.v - 1, \ldots ,\mu ,0 \leqslant \mu< n$$ is considered in a Banach space E. Herev[k](t)=(a(t) d/dt)k v(t)a(t) being continuous fort⩾0, α(t) >0 for t > 0 and\(\int_0^1 {\frac{{dz}}{{a(z)}} = + \infty ;}\) the operator A is strongly positive in E. The estimates , are obtained for ℒ: n even, λ varying over a half plane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.