Abstract

Colloidal aperiodic phases (i.e., entropy stabilized degenerate crystals, DCs) are realized via self-assembly of hollow fluorescent silica dimers under wedge-cell confinement. The dimer building blocks approximate two tangent spheres and their arrangements are studied via laser scanning confocal microscopy. In the DCs, the individual lobes tile a lattice and five distinct DC arrangements with square, triangular or rectangular layer symmetry are determined as a function of confinement height. Moreover, Monte Carlo simulations are used to construct the phase diagram for DCs up to two layer confinements and to analyze structural order in detail. Just as for spheres, the DC structural transitions under confinement are attributed to the ability or frustration to accommodate an integral number of particle layers between hard walls. Unlike spheres, dimers can also experience transitions involving changes in orientation. DCs are among the unconventional structures (e.g., semi-regular tilings, quasicrystals, plastic crystals) expected to enhance the properties of photonic solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.