Abstract

The Keller-Segel model is a well-known system representing chemotaxis in living organisms. We study the convergence of a generalized nonlinear variant of the Keller-Segel to the degenerate Cahn-Hilliard system. This analysis is made possible from the observation that the Keller-Segel system is equivalent to a relaxed version of the Cahn-Hilliard system. Furthermore, this latter equivalent system has an interesting application in the modelling of living tissues. Indeed, compressible and incompressible porous medium type equations are widely used to describe the mechanical properties of living tissues. The relaxed degenerate Cahn-Hilliard system, can be viewed as a compressible living tissue model for which the movement is driven by Darcy's law and takes into account the effects of the viscosity as well as surface tension at the surface of the tissue. We study the convergence of the Keller-Segel system to the Cahn-Hilliard equation and some of the analytical properties of the model such as the incompressible limit of our model. Our analysis relies on a priori estimates, compactness properties, and on the equivalence between the Keller-Segel system and the relaxed degenerate Cahn-Hilliard system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.