Abstract

Problems appear in discrete variable representations (DVRs) based on general basis sets when the coordinate matrix has degenerate eigenvalues. Then the DVR is not uniquely defined. This paper shows that this problem can be caused by symmetry. Taking the symmetry into account when constructing the DVR solves the problem. The symmetry effect can be particularly important for the time-dependent DVR used in multiconfigurational time-dependent Hartree calculations employing the correlation DVR (CDVR) approach. Problems reported previously for the initial-state selected treatment of the H+H(2) reaction can be attributed to this symmetry effect. They can be solved by using a symmetry-adapted approach to construct the time-dependent DVR. Thus, the present paper shows that the CDVR scheme can be employed also in initial-state selected scattering calculations if the symmetry of the system is properly taken into account in the construction of the time-dependent DVR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.