Abstract

The degassing history of a rhyolitic igneous system was documented from analyses of drill core samples through the extrusive and intrusive portions of Obsidian Dome and of surface samples of associated tephra. The initial volatile composition of the Inyo magma was estimated to be 4.0 wt % H2O, 500 ppm F, 800 ppm Cl, and 80 ppm S. Retained volatile contents of glassy and crystalline samples reflect the effects of decompression and second boiling. Decompression is rapid and involves loss of water‐rich fluid until a close approach to lithostatic equilibrium is achieved. Second boiling is a slower process and produces a chlorine‐rich fluid, some of which can be trapped during development of extremely fine crystallization textures. Nearly complete dewatering during decompression of surface‐extruded magma strongly undercools the system (ΔT ≈ 175°C), suppressing crystallization and yielding glassy rhyolitic lava. Partial degassing of shallowly intruded magma permits pervasive crystallization even at high cooling rates. The subvolcanic intrusive regime is the zone of maximum volatile release because second boiling is incomplete in extrusives, and volatile‐bearing crystalline phases are stable in magma crystallized at greater depth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.