Abstract

ABSTRACT Heritable endobacteria, which are transmitted from one host generation to the next, are subjected to evolutionary forces that are different from those experienced by free-living bacteria. In particular, they suffer consequences of Muller’s ratchet, a mechanism that leads to extinction of small asexual populations due to fixation of slightly deleterious mutations combined with the random loss of the most-fit genotypes, which cannot be recreated without recombination. Mycoplasma-related endobacteria (MRE) are heritable symbionts of fungi from two ancient lineages, Glomeromycota (arbuscular mycorrhizal fungi) and Mucoromycotina. Previous studies revealed that MRE maintain unusually diverse populations inside their hosts and may have been associated with fungi already in the early Paleozoic. Here we show that MRE are vulnerable to genomic degeneration and propose that they defy Muller’s ratchet thanks to retention of recombination and genome plasticity. We suggest that other endobacteria may be capable of raising similar defenses against Muller’s ratchet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.