Abstract

We study the transition from an Emergent Galileon condensate phase of the early universe to a later expanding radiation phase. This "defrosting" or "preheating" transition is a consequence of the excitation of matter fluctuations by the coherent Galileon condensate, in analogy to how preheating in inflationary cosmology occurs via the excitation of matter fluctuations through coupling of matter with the coherent inflaton condensate. We show that the "minimal" coupling of matter (modeled as a massless scalar field) to the Galileon field introduced by Creminelli, Nicolis and Trincherini in order to generate a scale-invariant spectrum of matter fluctuations is sufficient to lead to efficient defrosting, provided that the effects of the non-vanishing expansion rate of the universe are taken into account. If we neglect the effects of expansion, an additional coupling of matter to the Galileon condensate is required. We study the efficiency of the defrosting mechanism in both cases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.