Abstract

Objective Distraction osteogenesis is a method of stimulating the growth of new bone tissue in order to lengthen the extremities or bridge resected bone defects. In addition to the now-established intramedullary procedures, two different fixator systems are in use. The present study investigated the classical Ilizarov ring fixator (IRF) and a hexapod to assess the precision of lower-leg lengthening and complications classified using the Paley criteria for problems, obstacles, and complications. The study also examined the follow-up results in functional tests to assess outcomes in terms of range of motion in adjacent joints, daily activities, and quality of life. Patients and methodsA total of 43 patients (53 segments) who were treated over a period of 16 years were re-assessed. In 33 segments, treatment was carried out with the hexapod Taylor Spatial Frame (TSF); the conventional IRF was used in 20 segments. The patients’ mean age was 13.5 years (range 2–54 years). The follow-up examinations were carried out 2–15 years postoperatively and comprised measurement of a current leg axis view with the patient standing, calculation of a knee score, activity scores, ankle joint scores, and assessment of motor function and sensory function using appropriate scores in the lower leg and foot. The post-treatment health-related quality of life was assessed using the Short-Form Health Survey-36 questionnaire. ResultsUsing the Paley criteria, far fewer problems occurred in the TSF group in comparison with the IRF (TSF 12.1%, IRF 50%). In the problems category, significant differences were observed with regard to axial deviation (TSF 0%, IRF 36.8%) and pin infections (TSF 9.1%, IRF 40%). Comparison of the obstacles and complications did not identify any significant differences between the two groups. Analysis of the scores for the knee, activity, and motor function/sensory function also did not show any marked discrepancies, apart from a major difference in mobility in the upper and lower ankle joints with poorer findings in the TSF group.ConclusionsDuring treatment, the TSF ring fixator leads to fewer problems, fewer secondary axial translations, and fewer pin infections. However, with temporary transfixation of the ankle joints, the TSF system is also associated with postoperative deterioration in mobility in the upper and lower ankle joint.

Highlights

  • In western Europe and North America, fixators have been in use for correcting and lengthening the extremities for around 35 years

  • During treatment, the Taylor Spatial Frame (TSF) ring fixator leads to fewer problems, fewer secondary axial translations, and fewer pin infections

  • With temporary transfixation of the ankle joints, the TSF system is associated with postoperative deterioration in mobility in the upper and lower ankle joint

Read more

Summary

Introduction

In western Europe and North America, fixators have been in use for correcting and lengthening the extremities for around 35 years. Ilizarov used bracing wires to attach bone fragments to rings, which were joined together using threaded rods, in order to apply targeted compression to the fracture cleft. The formation of new bone in a process known as distraction osteogenesis, through targeted traction on fractured or osteotomized ends, became known all over the world as the “tension–stress effect” in the decades that followed (Ilizarov 1989a, b). It forms the basis for what is known as callotasis in lengthening osteotomies using both external and intramedullary lengthening systems. Since the late 1990s, hexapod fixator systems derived from the field of robotics have increasingly been used (Rödl et al 2003; Seide et al 1999)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call