Abstract
Active matter with local polar or nematic order is subject to the well-known Simha-Ramaswamy instability. It is so far unclear how, despite this instability, biological tissues can undergo robust active anisotropic deformation during animal morphogenesis. Here we ask under which conditions protein concentration gradients (e.g. morphogen gradients), which are known to control large-scale coordination among cells, can stabilize such deformations. To this end, we study a hydrodynamic model of an active polar material. To account for the effect of the protein gradient, the polar field is coupled to the boundary-provided gradient of a scalar field that also advects with material flows. Focusing on the large system size limit, we show in particular: (a) the system can be stable for an effectively extensile coupling between scalar field gradient and active stresses, i.e. gradient-extensile coupling, while it is always unstable for a gradient-contractile coupling. Intriguingly, there are many systems in the biological literature that are gradient-extensile, while we could not find any that are clearly gradient-contractile. (b) Stability is strongly affected by the way polarity magnitude is controlled. Taken together, our findings, if experimentally confirmed, suggest new developmental principles that are directly rooted in active matter physics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.