Abstract

Recent experiments on the anisotropic spin-1/2 triangular antiferromagnet Cs_2CuBr_4 have revealed a remarkably rich phase diagram in applied magnetic fields, consisting of an unexpectedly large number of ordered phases. Motivated by this finding, we study the role of spatial anisotropy, Dzyaloshinskii-Moriya interactions, and quantum fluctuations on the magnetization process of a triangular antiferromagnet, coming from the semiclassical limit. The richness of the problem stems from two key facts: 1) the classical isotropic model exhibits a large accidental ground state degeneracy, and 2) these three ingredients compete with one another and split this degeneracy in opposing ways. Using a variety of complementary approaches, including extensive Monte Carlo numerics, spin-wave theory, and an analysis of Bose-Einstein condensation of magnons at high fields, we find that their interplay gives rise to a complex phase diagram consisting of numerous incommensurate and commensurate phases. Our results shed light on the observed phase diagram for Cs_2CuBr_4 and suggest a number of future theoretical and experimental directions that will be useful for obtaining a complete understanding of this material's interesting phenomenology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.