Abstract
We establish general counting formulas and bijections for deformations of the braid arrangement. Precisely, we consider real hyperplane arrangements such that all the hyperplanes are of the form xi−xj=s for some integer s. Classical examples include the braid, Catalan, Shi, semiorder and Linial arrangements, as well as graphical arrangements. We express the number of regions of any such arrangement as a signed count of decorated plane trees. The characteristic and coboundary polynomials of these arrangements also have simple expressions in terms of these trees.We then focus on certain “well-behaved” deformations of the braid arrangement that we call transitive. This includes the Catalan, Shi, semiorder and Linial arrangements, as well as many other arrangements appearing in the literature. For any transitive deformation of the braid arrangement we establish a simple bijection between regions of the arrangement and a set of labeled plane trees defined by local conditions. This answers a question of Gessel.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.