Abstract

Using the formulation of the immersion of a two-dimensional surface into the three-dimensional Euclidean space proposed recently, a mapping from each symmetry of integrable equations to surfaces in R3 can be established. We show that among these surfaces the sphere plays a unique role. Indeed, under the rigid SU(2) rotations all integrable equations are mapped to a sphere. Furthermore we prove that all compact surfaces generated by the infinitely many generalized symmetries of the sine-Gordon equation are homeomorphic to a sphere. We also find some new Weingarten surfaces arising from the deformations of the modified Kurteweg–de Vries and of the nonlinear Schrödinger equations. Surfaces can also be associated with the motion of curves. We study curve motions on a sphere and we identify a new integrable equation characterizing such a motion for a particular choice of the curve velocity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.