Abstract
The concept of a versal deformation of a Lie algebra is investigated and obstructions to extending an infinitesimal deformation to a higher-order one are described. The rigidity of the Witt algebra and the Virasoro algebra is deduced from cohomology computations for certain Lie algebras of vector fields on the real line. The Lie algebra of vector fields on the line that vanish at the origin also turns out to be rigid. All the affine Lie algebras are rigid; this is derived from the cohomology of their maximal nilpotent subalgebra. On the other hand, the maximal nilpotent subalgebras in both the Virasoro and affine cases are not rigid and have interesting nontrivial deformations (in fact, most vector field Lie algebras are not rigid).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.