Abstract

In this paper we prove graded versions of the Darboux Theorem and Weinstein's Lagrangian tubular neighbourhood Theorem in order to study the deformation theory of Lagrangian NQ-submanifolds of degree n symplectic NQ-manifolds. Using Weinstein's Lagrangian tubular neighbourhood Theorem, we attach to every Lagrangian NQ-submanifold an L∞-algebra, which controls its deformation theory. The main examples are coisotropic submanifolds of Poisson manifolds and (higher) Dirac structures with support in (higher) Courant algebroids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.