Abstract

We compute the Nakayama automorphism of a Poincaré–Birkhoff–Witt (PBW)-deformation of a Koszul Artin–Schelter (AS) Gorenstein algebra of finite global dimension, and give a criterion for an augmented PBW-deformation of a Koszul Calabi–Yau algebra to be Calabi–Yau. The relations between the Calabi–Yau property of augmented PBW-deformations and that of non-augmented cases are discussed. The Nakayama automorphisms of PBW-deformations of Koszul AS–Gorenstein algebras of global dimensions 2 and 3 are given explicitly. We show that if a PBW-deformation of a graded Calabi–Yau algebra is still Calabi–Yau, then it is defined by a potential under some mild conditions. Some classical results are also recovered. Our main method used in this article is elementary and based on linear algebra. The results obtained in this article will be applied in a subsequent paper (He et al., Skew polynomial algebras with coefficients in AS regular algebras, preprint, 2011).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.