Abstract
Presented here is a total-Lagrangian displacementbased finite-element formulation for plates and shells undergoing large displacements and rotations. The theory fully accounts for geometric nonlinearities (large rotations),general initial curvatures, and extensionality by using Jaumann stress and strain measures, an exact coordinate transformation, and a new concept of orthogonal virtual rotations. Moreover, transverse shear deformations are accounted for by using a first-order shear deformation theory with shear correction factors obtained by matching the shear strain energy and stress resultants with those of a layerwise higher-order shear deformation theory. A test fixture has been built for bending tests with different loading conditions. Large static deformation tests on a cantilevered steel plate have been performed. Methods of measuring large deformations involving large rotations and influence of gravity are studied. Experimental results are compared with finite-element results, and it shows that the finite-element model is accurate in predicting large deformations of flexible two-dimensional structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.