Abstract

Systematic analysis of deformations in neutron-rich N=14 isotones was done based on the method of antisymmetrized molecular dynamics. The property of the shape coexistence in $^{28}$Si, which is known to have the oblate ground state and the prolate excited states, was successfully described. The results suggest that the shape coexistence may occur also in neutron-rich N=14 nuclei as well as $^{28}$Si. It was found that the oblate neutron shapes are favored because of the spin-orbit force in most of N=14 isotones. $Q$ moments and $E2$ transition strengths in the neutron-rich nuclei were discussed in relation to the intrinsic deformations, and a possible difference between the proton and neutron deformations in $^{24}$Ne was proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.