Abstract

High quality 4D-CBCT can be obtained by deforming a planning CT (pCT), where the deformation vector fields (DVF) are estimated by matching the forward projections of pCT and 4D-CBCT projections. The matching metric used in the previous study is the sum of squared intensity differences (SSID). The scatter signal level in CBCT projections is much higher than pCT, the SSID metric may not lead to optimal DVF. To improve the DVF estimation accuracy, we develop a new matching metric that is less sensitive to the intensity level difference caused by the scatter signal. The negative logarithm of correlation coefficient (NLCC) is used as the matching metric. A non-linear conjugate gradient optimization algorithm is used to estimate the DVF. A 4D NCAT phantom and an anthropomorphic thoracic phantom were used to evaluate the NLCC-based algorithm. In the NCAT phantom study, the relative reconstruction error is reduced from 18.0% in SSID to 14.13% in NLCC. In the thoracic phantom study, the root mean square error of the tumor motion is reduced from 1.16 mm in SSID to 0.43 mm in NLCC. NLCC metric can improve the image reconstruction and motion estimation accuracy of DVF-driven image reconstruction for 4D-CBCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.