Abstract
The deformation-to-fracture evolution of a flexible polymer material under high-strain-rate compressive loading conducted by a split Hopkinson pressure bar (SHPB) setup was investigated. Representative tests were carried out at different strain rate levels, followed by the characterization of dynamic damage after each test. Craze and crack patterns on the end surface of the specimen were carefully analyzed. The failure patterns appear along the radial and circumferential directions. The sequence of their formation with increasing strain/stress level was revealed. The mechanisms resulting in the craze and crack patterns were analyzed. The heterogeneous stress distribution in the specimen and the resultant damage morphologies were demonstrated. This research not only shows the deformation-to-fracture evolution of a flexible polymer material under SHPB loading, but also provides a better clarification of the localized stress distribution in the tested material via SHPB technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Polymer Testing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.