Abstract

In order to solve two problems in deformation theory, we establish natural structures of homotopy Lie algebras and of homotopy associative algebras on tensor products of algebras of different types and on mapping spaces between coalgebras and algebras. When considering tensor products, such algebraic structures extend the Lie algebra or associative algebra structures that can be obtained by means of the Manin products of operads. These new homotopy algebra structures are proven by to compatible with the concepts of homotopy theory: $\infty$-morphisms and the Homotopy Transfer Theorem. We give a conceptual interpretation of their Maurer-Cartan elements. In the end, this allows us to construct the deformation complex for morphisms of algebras over an operad and to represent the deformation $\infty$-groupoid for differential graded Lie algebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.