Abstract

The evolution of the deformation structure with strain has been studied using electron backscatter diffraction (EBSD). Samples from interrupted uniaxial tensile tests and from a cyclic tension/compression test were investigated. The evolution of low angle boundaries (LABs) was studied using boundary maps and by measuring the LAB density. From calculations of local misorientations, smaller orientation changes in the substructure can be illustrated. The different orientations developed with strain within a grain, due to operation of different slip systems in different parts of the grain, were studied using a misorientation profile showing substantial orientation changes after a true strain of 0.24. The texture evolution with increasing strain was followed by using inverse pole figures (IPFs). The observed substructure development in the ferritic and austenitic phases could be successfully correlated with the stress-strain curve from a tensile test. LABs were first observed in the different phases when the strain hardening rate changed in appearance indicating that cross slip started to operate as a significant dislocation recovery mechanism. The evolution of the deformation structure is concluded to occur in a similar manner in the austenitic and ferritic phases but with different texture evolution for the two phases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.