Abstract

Deformation structures in the wall rocks of igneous intrusions emplaced at shallow crustal depths preserve an important record of how space was created for magma in the host rocks. Trachyte Mesa, a small Oligocene age intrusion in the Henry Mountains, Utah, is composed of a series of stacked tabular, sheet-like intrusions emplaced at 3–3.5 km depth into sandstone-dominated sedimentary sequences of late Palaeozoic–Mesozoic age. New structural analysis of the spatial distribution, geometry, kinematics and relative timings of deformation structures in the host rocks of the intrusion has enabled the recognition of distinct pre-, syn-, and late-stage-emplacement deformation phases. Our observations suggest a two-stage growth mechanism for individual sheets where radial growth of a thin sheet was followed by vertical inflation. Dip-slip faults formed during vertical inflation; they are restricted to the tips of individual sheets due to strain localisation, with magma preferentially exploiting these faults, initiating sill (sheet) climbing. The order in which sheets are stacked impacts on the intrusion geometry and associated deformation of wall rocks. Our results offer new insights into the incremental intrusion geometries of shallow-level magmatic bodies and the potential impact of their emplacement on surrounding host rocks.

Highlights

  • 32 Shallow-level (

  • Our results offer new insights into the incremental intrusion geometries of shallow-level magmatic bodies and the potential impact of their emplacement on surrounding host rocks. 28 Keywords: Deformation bands; Faults; Intrusion; Sill; Laccolith; Emplacement mechanism

  • 32 Shallow-level (

Read more

Summary

11 Abstract

Deformation structures in the wall rocks of igneous intrusions emplaced at shallow crustal depths preserve an important record of how space was created for magma in the host rocks. New structural analysis of the spatial distribution, geometry, kinematics and relative timings of deformation structures in the host rocks of the intrusion has enabled the recognition of distinct pre-, syn-, and late-stage-emplacement deformation phases. Our observations suggest a two-stage growth mechanism for individual sheets where radial growth of a thin sheet was followed by vertical inflation. The order in which sheets are stacked impacts on the intrusion geometry and associated deformation of wall rocks. Our results offer new insights into the incremental intrusion geometries of shallow-level magmatic bodies and the potential impact of their emplacement on surrounding host rocks. Our results offer new insights into the incremental intrusion geometries of shallow-level magmatic bodies and the potential impact of their emplacement on surrounding host rocks. 28 Keywords: Deformation bands; Faults; Intrusion; Sill; Laccolith; Emplacement mechanism

Introduction
Findings
Discussion
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.