Abstract

The Huangtupo landslide is the volumetrically largest, most complex, and economically most significant landslide in the Three Gorges Reservoir Region. Detailed information about the character and dynamics of this tractive landslide is available because of access provided by a unique, 908-meter in situ research tunnel, augmented by long-term data provided by an extensive monitoring system for ground water levels, rainfall, and in situ deformation. Three major rupture surfaces plus 12 interlayer sliding zones (weak layers) were recognized during tunnel excavation, which also provided access and samples that establish a complex, multistage deformation history. Data from the in situ monitoring system shows that the toe of the landslide is creeping at a steady annual rate of about 25–30 mm, but at a slower rate of about 12 mm/year near the crown. However, the monthly creep rates are variable, being highest during May–August when rainfall is heavy and reservoir levels are low. Displacement-depth curves in the HZ6 borehole inclinometer establish that the creep of Slump Mass I# is most rapid above a depth of 37 m, where a major rupture zone occurs immediately above bedrock. Engineered defense structures along the toe of Huangtupo landslide can improve its stability to some extent. The effect of rapid changes of the reservoir level on landslide stability should be considered in reservoir management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call