Abstract
Unpaved road sections experience degradation and accumulation of plastic deformation under repeated loading. Geogrid placed between subgrade and aggregate base course (ABC) can improve section performance through several mechanisms and lead to reduction in stresses and plastic deformation. An unpaved road design model that includes provisions for mobilization of subgrade bearing capacity under axisymmetric condition is proposed. The model incorporates base course property, mobilization of subgrade bearing capacity with rutting, degradation of base course stress attenuation with cyclic load, and the effect of reinforcement inclusion. An elastic layer method has been used to back-analyze the vertical stresses on subgrade with data from previous cyclic plate load tests performed in the laboratory. The degradation of unpaved sections was expressed as a reduction in base course-subgrade elastic modulus ratio (E1/E2) with an increasing number of cycles or a decrease in stress distribution angle of base course. ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.