Abstract

Deformation quantization (of a commutative algebra) is based on the introduction of a new associative product, expressed as a formal series, [Formula: see text]. In the case of the algebra of functions on a symplectic space the first term in the perturbation is often identified with the antisymmetric Poisson bracket. There is a wide-spread belief that every associative *-product is equivalent to one for which C1(f,g) is antisymmetric and that, in particular, every abelian deformation is trivial. This paper shows that this is far from being the case and illustrates the existence of abelian deformations by physical examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.