Abstract

Deformation quantization is a powerful tool to quantize some classical systems especially in noncommutative space. In this work we first show that for a class of special Hamiltonian one can easily find relevant time evolution functions and Wigner functions, which are intrinsic important quantities in the deformation quantization theory. Then based on this observation we investigate a two-coupled harmonic oscillators system on the general noncommutative phase space by requiring both spatial and momentum coordinates do not commute each other. We derive all the Wigner functions and the corresponding energy spectra for this system, and consider several interesting special cases, which lead to some significant results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.