Abstract

Micro-scale damage processes during hypervelocity impact into steel targets have been evaluated using image analysis and electron backscatter diffraction techniques. The targets were 50 mm thick and the impact velocity was 2.6 km/s. Image analysis of the pearlite grains shows localized pockets of strain upwards of 55% occurring at depths associated with penetrator geometry. Electron back scatter diffraction (EBSD) shows that inter-granular ferrite grain orientations become less uniform, with deformation being primarily two- and three-dimensional. Mobilized micro-ferrite textures aligned in the shot direction were also identified with EBSD. These are formed as a result of significant plastic deformation and frictional shearing of the small volume of material.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.