Abstract

In FCC metals a single parameter – stacking fault energy (SFE) – can help to predict the expectable way of deformation such as martensitic deformation, deformation twinning or pure dislocation glide. At low SFE one can expect the perfect dislocations to dissociate into partial dislocations, but at high SFE this separation is more restricted. The role of the magnitude of the stacking fault energy on the deformation microstructures and tensile behaviour of different austenitic steels have been investigated using uniaxial tensile testing and electron backscatter diffraction (EBSD). The SFE was determined by using quantum mechanical first-principles approach. By using plasticity models we make an attempt to explain and interpret the different strain hardening behaviour of stainless steels with different stacking fault energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.