Abstract

AbstractThe frontal megathrust of the Nankai Trough subduction zone is recognized as a seismogenic fault based on a record of frictional heating, but the underlying micromechanical processes that act on the fault surface are poorly known. Here we present a layer of fault gouge ∼2 mm thick within a core drilled across the megathrust, in which smectite‐rich siltstone has been transformed into a preferentially oriented illite aggregate. The nearly complete breakdown of smectite is consistent with fast frictional heating on this fault; however, the microtextures of the gouge and its surroundings are asserted one produced experimentally by slow slip. We suggest that slow slip with small shear strain has overprinted the textures produced by the previous faster and larger slip. This interpretation based on microtectonic evidence suggests a slow slip around the frontal megathrust took place during slow down, afterslip, or interseismic as observed now going in subduction zone. We suggest that the illite‐dominated gouge is conditionally stable, likely to shift from rapid to slow slip at different times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.