Abstract

Support Vector Machine (SVM) is a new pattern recognition method developed in recent years on the foundation of statistical learning theory. It wins popularity due to many attractive features and emphatically performance in the fields of nonlinear and high dimensional pattern recognition. Due to the complexity of the deep excavation, deformation prediction problem has not been a good solution. In the paper the support vector machine model was proposed to predict the deep excavation deformation. On the basis of deep excavation displacement data measured with real time series, the model of deep excavation displacement with time was built by SVM. Typical deformation data of deep excavation is used as learning and test samples. Comparison analysis is made between calculated values generated by SVM method and observed values. The result shows this method is feasible and effective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.