Abstract

Abstract 2D deformation experiments on multilayer models of a brittle-ductile lithosphere are reviewed. The experimental method consists of simulating simplified strength profiles which incorporate brittle (frictional) and ductile (viscous) rheologies with gravity forces. A selection of models built with sand and silicone putties to represent brittle and ductile lithosphere layers, respectively, is used to illustrate the effects of variations in strength profiles on deformation patterns. Models of extension first consider lithosphere necking and the development of narrow rifts, with application to continental rifts and passive margins, and, second, lithosphere spreading with application to the development of wide rifts and core complexes. Models of compression compare sandbox-type and brittle-ductile multilayer-type experiments. Results are applied to mountain belt formation and, in particular, to the Pyrenees and the western Alps. Both extensional and compressional experiments demonstrate that the presence/absence of a sub-Moho brittle mantle and the coupling/decoupling between brittle and ductile layers play a dominant role on localized versus distributed deformation, at lithosphere scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.