Abstract

AbstractWe study the effects of adding a local perturbation in a pattern‐forming system, taking as an example the Ginzburg–Landau equation with a small localized inhomogeneity in two dimensions. Measuring the response through the linearization at a periodic pattern, one finds an unbounded linear operator that is not Fredholm due to continuous spectrum in typical translation invariant or weighted spaces. We show that Kondratiev spaces, which encode algebraic localization that increases with each derivative, provide an effective means to circumvent this difficulty. We establish Fredholm properties in such spaces and use the result to construct deformed periodic patterns using the Implicit Function Theorem. We find a logarithmic phase correction, which vanishes for a particular spatial shift only, which we interpret as a phase‐selection mechanism through the inhomogeneity. Copyright © 2013 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.