Abstract
AbstractIn this paper we prove that most ropes of arbitrary multiplicity supported on smooth curves can be smoothed. By a rope being smoothable we mean that the rope is the flat limit of a family of smooth, irreducible curves. To construct a smoothing, we connect, on the one hand, deformations of a finite morphism to projective space and, on the other hand, morphisms from a rope to projective space. We also prove a general result of independent interest, namely that finite covers onto smooth irreducible curves embedded in projective space can be deformed to a family of 1:1 maps. We apply our general theory to prove the smoothing of ropes of multiplicity 3 on P1. Even though this paper focuses on ropes of dimension 1, our method yields a general approach to deal with the smoothing of ropes of higher dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.