Abstract

The dorsal root ganglion (DRG) that is embedded in the foramen of the cervical vertebra can be injured during a whiplash motion. A potential cause is that whilst the neck bends in the whiplash motion, the changes of spinal canal volume induce impulsive pressure transients in the venous blood outside the dura mater (DM) and in the cerebrospinal fluid (CSF) inside the DM. The fluids can dynamically interact with the DRG and DM, which are deformable. In this work, the interaction is investigated numerically using a strong-coupling partitioned method that synchronize the computations of the fluid and structure. It is found that the interaction includes two basic processes, i.e., the pulling and pressing processes. In the pulling process, the DRG is stretched towards the spinal canal, and the venous blood is driven into the canal via the foramen. This process results from negative pressure in the fluids. In contrast, the pressing process is caused by positive pressure that leads to compression of the DRG and the outflow of the venous blood from the canal. The largest pressure gradient is observed at the foramen, where the DRG is located at. The DRG is subject to prominent von Mises stress near its end, which is fixed without motions. The negative internal pressure is more efficient to deform the DRG than the positive internal pressure. This indicates that the most hazardous condition for the DRG is the pulling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.