Abstract

The deformation of dispersed polystyrene (PS) droplets in immiscible polypropylene (PP) matrices during melt spinning of blend fibers were simulated by adopting the droplet deformation criteria. The ratios of number-average length to diameter were measured through morphology analysis, and compared with the simulated values. It was found that the adopted deformation models described the deformation behavior of the dispersed droplets during melt spinning very well. Dispersed droplets in the center of the fiber tend to be stretched longer than those of near to the surface, due to the radial temperature gradient during fiber formation. Moreover, combining with the rheological studies of raw materials, a theoretical relation between temperature and deformation was established and used to determine the radial temperature differences along the spinning line. It was found that the radial temperature gradients vary from 0.22 to 0.35 °C/μm at 40 cm beneath to the spinneret at the discussed take-up velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.