Abstract

Dynamics of entangled interfacial polymer layers around nanoparticles determine the linear rheological properties of polymer nanocomposites. In this study, the nonlinear elastic properties of nanocomposites are examined under large-amplitude oscillatory shear (LAOS) flow to reveal the effect of interfacial chemical heterogeneity on the deformation mechanism of polymer-grafted and polymer-adsorbed nanoparticle composites. Adsorbed-poly(methyl methacrylate) (PMMA) layers presented stronger interfacial stiffening and reinforcement than PMMA-grafted layers. Chemical heterogeneities of interfacial layers, provided by polymer-adsorbed and low graft density particles, deformed at smaller strains than the poly(ethylene oxide) (PEO) matrix. Interfaces of loosely bound PMMA and PEO exhibited stiffening at low strains due to the enhanced chain mixing and entanglements. These results demonstrate that chemical and dynamic heterogeneities in interfacial layers have significant importance in designing adaptive polymer nanocomposites for large shear deformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.