Abstract

A novel Fe3O4 coated conductive carbon modified tourmaline (Tml@C@Fe3O4) catalyst with the nuclear shell structure was prepared to boost the Fe3+/Fe2+ cycle in Fenton-like process. The catalyst was prepared by a simple combination of hydrothermal method and calcination. The results showed that the smaller size of Tml in the core was beneficial to get the stronger piezoelectric effect. The reduction efficiency of Fe3+ for Tml@C was highly boosted by the deformation of charge density, and the optimum was 10.24 times of that before modification with an average size of 1.3 µm. Furthermore, the embedded layer of conductive carbon can also reduce iron leaching and shrink ultimate pH variation. The removal efficiencies of sulfathiazole (STZ) were 72.82–100 % at pH 3–7 in the present work. Therefore, this study provides a novel Fenton-like catalyst for the efficient treatment of antibiotics at a wide pH range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.