Abstract
AbstractThe deformation of a spherical capsule in oscillating shear flow is presented. The boundary element method is used to simulate the capsule motion under Stokes flow. We show that a capsule at high frequencies follows the deformation given by a leading-order prediction, which is derived from an assumption of small deformation limit. At low frequencies, on the other hand, a capsule shows an overshoot phenomenon where the maximum deformation is larger than that in steady shear flow. A larger overshoot is observed for larger capillary number or viscosity ratio. Using the maximum deformation in start-up shear flow, we evaluate the upper limit of deformation in oscillating shear flow. We also show that the overshoot phenomenon may appear when the quasi-steady orientation angle under steady shear flow is less than$9.0^{\circ }$. We propose an equation to estimate the threshold frequency between the low-frequency range, where the capsule may have an overshoot, and the high-frequency range, where the deformation is given by the leading-order prediction. The equation only includes the viscosity ratio and the Taylor parameter under simple shear flow, so it can be extended to other deformable particles, such as bubbles and drops.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.