Abstract

A main-chain, polydomain, smectic liquid crystalline elastomer (LCE) was prepared by reacting the LC epoxy monomer, diglycidyl ether of 4,4'-dihydroxy-R-methylstilbene, with the aliphatic diacid, sebacic acid. When deformed in uniaxial tension, a polydomain-to-monodomain transition took place leading to bulk, macroscopic orientation. With this process was associated a plateau in the nominal stress-versus-strain curve and a dramatic change in optical properties from opaque to translucent. Polarized optical microscopy showed that the transition took place by an elongation of the LC domains and a rotation of the local director orientations along the stress axis. The strain and orientation of the deformed samples were retained upon unloading, even after annealing above Tg for extended periods. Upon heating, the oriented LCEs disordered at the same temperature as the undeformed polydomains and remembered their original polydomain microstructure and sample dimensions when subsequently cooled from the isotropic state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.