Abstract

To reduce the dependence of real-time deformation monitoring and shape reconstruction of flexible planar structures on experience, mathematical models, specific structural curvature (shape) sensors, etc., we propose a reconstruction approach based on FBG and a data-driven model; with the aid of ANSYS finite element software, a simulation model was built, and training samples were collected. After the machine learning training, the mapping relationship was established, which is between the strain and the deformation variables (in three directions of the x-, y-, z-axis) of each point of the surface of the flexible planar structure. Four data-driven models were constructed (linear regression, regression tree, integrated tree, and BP neural network) and comprehensively evaluated; the predictive value of the BP neural network was closer to the true value (R2 = 0.9091/0.9979/0.9964). Finally, the replication experiment on the flexible planar structure specimen showed that the maximum predictive error in the x-, y-, and z-axis coordinates were 2.93%, 35.59%, and 16.21%, respectively. The predictive results are highly consistent with the expected results of flexible planar structure deformation monitoring and shape reconstruction in the existing test environment. The method provides a new high-precision method for the real-time monitoring and shape reconstruction of flexible planar structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.