Abstract

A metallographic study has been made of the microstructures produced by room temperature deformation of 0.6mm thick commercially pure titanium sheet metal in uniaxial, plane strain and biaxial tension. Deformation twinning becomes increasingly important as the deformation mode changes from uniaxial through plane strain to equibiaxial tension, and is more significant for strain transverse to the rolling direction than for strain in the longitudinal direction. In uniaxial tension, 1122 twins are dominant in longitudinal straining, while 1012 twins dominate in transverse straining. In plane strain and equibiaxial straining, 1012 twinning is suppressed and largely replaced by 1122 twinning. The observed changes in twin occurrence and type are attributed to the interaction of the imposed stress system and the crystallographic texture of the rolled sheet, which alters the distribution of the grain basal-plane poles with respect to the operative stress axes. In uniaxial tension parallel to the longitudinal direction, twins favored by ‘c’ axis compression are produced, while in the transverse direction twins favored by ‘c’ axis tension appear. In plane strain and biaxial tension the dominant stress is through-thickness compression, which produces twins favored by ‘c’ axis compression in nearly all cases. The alterations in twin orientation and numbers are associated with changes in stress-strain behavior. As twin volume fraction increases and twins are aligned more closely to the principal stress axis, the instantaneous work-hardening rate tends to stabilize at a nearly constant value over a large strain range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.